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Abstract

We define and study a new generalization of the Fréchet distribution called the beta
exponential Fréchet distribution. The new model includes thirty two special models.
Some of its mathematical properties, including explicit expressions for the ordinary and
incomplete moments, quantile and generating functions, mean residual life, mean inactiv-
ity time, order statistics and entropies are derived. The method of maximum likelihood
is proposed to estimate the model parameters. A small simulation study is also reported.
Two real data sets are applied to illustrate the flexibility of the proposed model compared
with some nested and non-nested models.

Keywords: generating function, maximum likelihood, entropy, Fréchet distribution, beta ex-
ponential–G family.

1. Introduction

In the past few decades, many generators have been proposed by extending some useful sta-
tistical distributions. Such generated families of distributions have been extensively used for
modeling and analyzing lifetime data in many applied sciences such as reliability, engineering,
actuarial sciences, demography, economics, hydrology, biological studies, insurance, medicine
and finance, among others. However, there still remain many real world phenomena involving
data, which do not follow any of the classical statistical distributions.

The Fréchet distribution was proposed to model extreme events such as annually maximum
one-day rainfalls and river discharges by Fréchet (1924). This distribution has found wide
application in extreme value theory. Further details about the Fréchet distribution can be
found in Kotz and Nadarajah (2000).

Some extensions of the Fréchet distribution are available in the literature, such as the ex-
ponentiated Fréchet (EFr) (Nadarajah and Kotz, 2003), beta Fréchet (BFr) (Nadarajah and
Gupta, 2004 and Barreto-Souza et al., 2011), transmuted Fréchet (TFr) (Mahmoud and Man-
douh, 2013), gamma extended Fréchet (GEFr) (Silva et al., 2013), Marshall-Olkin Fréchet
(Krishna et al., 2013), transmuted exponentiated Fréchet (TEFr) (Elbatal et al., 2014), Ku-
maraswamy Fréchet (Kw-Fr) (Mead and Abd-Eltawab, 2014), transmuted Marshall-Olkin
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Fréchet (TMOFr) (Afify et al., 2015a) and Weibull Fréchet (WFr) (Afify et al., 2016).

The cumulative distribution function (cdf) and probability density function (pdf) of the
Fréchet (Fr) distribution are, respectively, given by (for x > 0)

GFr(x; θ, β) = e−( θx)
β

and gFr(x; θ, β) = βθβx−β−1e−( θx)
β

, (1)

where θ > 0 is a scale parameter and β > 0 is a shape parameter, respectively.

The aim of this paper is to provide another extension of the Fréchet model using the Beta
exponential-G (BEx-G) family of distributions proposed by Alzaatreh et al. (2013). So, we
propose the new beta exponential Fréchet (BExFr for short) distribution by adding three extra
shape parameters to the Fréchet distribution. The objective of this work is to study some
mathematical properties of the five-parameter BExFr model with the hope that it will attract
wider applications in reliability, engineering and other areas of research.

For an arbitrary baseline cdf G(x), Alzaatreh et al. (2013) defined the BEx-G family of
distributions by the cdf and pdf

F (x; a, b, λ) =
1

B (a, b)
B
(

1− (1−G(x))λ ; a, b
)

(2)

and

f(x; a, b, λ) =
λg (x)

B(a, b)
[1−G (x)]λb−1

{
1− [1−G (x)]λ

}a−1
, (3)

respectively, where g(x) = dG(x)/dx and a, b and λ are three extra positive shape parameters,
B (z; a, b) =

∫ z
0 t

a−1 (1− t)b−1 dt is the incomplete beta function, B (a, b) = Γ (a) Γ (b) /Γ (a+ b)
and Γ (.) is the gamma function. Clearly, when a = b = λ = 1, we obtain the baseline distri-
bution. If X is a random variable with pdf (3), we write X ∼ BEx-G(a, b, λ). An attractive
feature of this model is that these parameters can afford greater control over the weights in
both tails and in its center.

Next, we consider the Fr model in order to define the new distribution by taking G(x) in (2)
to be the cdf in (1) of the Fr distribution. Then, the cdf, say F (x) = F (x; a, b, λ, β, θ), of the
BExFr distribution (for x > 0) reduces to

F (x) =
1

B (a, b)
B

(
1−

(
1− e−( θx)

β
)λ

; a, b

)
. (4)

The corresponding pdf follows by inserting (1) in equation (3)

f (x) =
λβθβ

B(a, b)
x−β−1 e−( θx)

β
[
1− e−( θx)

β
]λb−1

{
1−

[
1− e−( θx)

β
]λ}a−1

. (5)

Henceforth, X ∼BExFr(a, b, λ, β, θ) denotes a random variable having density function (5).

The survival function (sf) and hrf of X are, respectively, given by

S(x) = 1− 1

B(a, b)
B

(
1−

(
1− e−( θx)

β
)λ

; a, b

)
and

h(x) =

λβθβx−β−1 e−( θx)
β
[
1− e−( θx)

β
]λb−1

{
1−

[
1− e−( θx)

β
]λ}a−1

{
B(a, b)−B

(
1−

(
1− e−( θx)

β
)λ

; a, b

)} .

The BExFr distribution appears to have the ability to model failure rate models which are
quite common in reliability and biological studies. Furthermore, a possible application of the
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BExFr distribution could be in modeling ordinal data as a latent response models. Ordinal
data are commonly used in many areas of application, some examples being the quality of an
item or service or performance (poor, fair, good, very good or excellent), seriousness of a defect
(minor, major, critical), taste of food (too mild, just right, too spicy) and extent of agreement
(strongly disagree, disagree, neutral, agree, strongly agree). Many techniques are available for
analyzing stochastic shifts in ordinal data; for a review see Agresti (1984). However, serious
difficulties arise when inferences are desired on both location and dispersion effects; see Nair
(1986) and Hamada and Wu (1990) and the accompanying discussions. The main cause of
difficulty in separating the location effects from dispersion effects when the data are ordinal
is that the number of categories is usually small (between 3 and 10). Therefore, when the
location parameter is pushed to the limit (either too high or too low), most of the data fall in
the extreme category giving a false impression of reduced variance. A common approach to the
analysis of ordinal data is to assume a continuous latent response distribution that is observed
through windows of ordered intervals with fixed, but unknown cutpoints. This approach is
implicit in the proportional odds model (McCullagh, 1980), which can be derived from an
underlying logistic response distribution and in other generalized linear models (McCullagh
and Nelder, 1989). These models are typically based on the assumption of a symmetric
continuous latent response having an infinite domain.

To resolve these difficulties, we propose the BExFr distribution as a model for the latent
variable. The following two properties of the beta distribution make it especially suitable for
modeling ordinal data:

• The BExFr distribution has an infinite domain.

• The BExFr distribution can flexibly model a wide variety of shapes including a bell-
shape (symmetric or skewed), U-shape and J-shape.

The BExFr distribution is a very flexible model having several special cases. It contains 32
sub-models listed in Table 1. The BExFr includes some important sub-models, namely: the
beta exponential inverse Rayleigh (BExIR), beta exponential inverse exponential (BExIEx),
beta Fréchet (BFr), beta inverse Rayleigh (BIR), beta inverse exponential (BIEx), exponenti-
ated exponential Fréchet (EExFr), exponentiated exponential inverse Rayleigh (EExIR), ex-
ponentiated exponential inverse exponential (EExIEx), beta exponential generalized inverse
Weibull (BExGIW) and beta exponential generalized inverse Rayleigh (BExGIR) distribu-
tions. Figure 1 displays some plots of the BExFr density for some values of the parameters
a, b, λ, β and θ. Further, plots of the hrf of the new distribution are shown in Figure 2.

We provide a comprehensive description of some mathematical properties of the BExFr dis-
tribution. The paper is outlined as follows. In Section 2, we derive useful representations for
the pdf and cdf of the BExFr. Some mathematical properties including the quantile function
(qf), ordinary and incomplete moments, moment generating function (mgf), Rényi, Shannon
and q-entropies, mean residual life (MRL) and mean inactivity time (MIT) are discussed in
Section 3. In section 4, we consider order statistics for a random sample of size n drawn from
the BExFr distribution. Certain characterizations are presented in Section 5. In Section 6, we
obtain the maximum likelihood estimates (MLEs) of the model parameters. Section 7 deals
with a small simulation study. In Section 8, the potentiality of the new model is illustrated
by means of two applications to two real data sets. Finally, in Section 9, we provide some
concluding remarks.

2. Mixture representation

In this section, we derive mixture representations for the pdf and cdf of X. In order to obtain
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Figure 1: The plots of BExFr density function.

a simple form for the BExFr pdf, we expand (5) using the power series

(1− z)b−1 =

∞∑
j=0

(−1)j Γ (b)

j! Γ (b− j)
zj , |z| < 1, b > 0. (6)

Using expansion (6) in equation (5) and after some algebra, the pdf of X can be written as

f (x) =
λβθβ

B(a, b)
x−β−1 e−( θx)

β
∞∑
j=0

(−1)j Γ (a)

j! Γ (a− j)

[
1− e−( θx)

β
]λ(b+j)−1

︸ ︷︷ ︸
A

.

By applying (6) in the quantity A, the last equation becomes

f (x) =

∞∑
k=0

υkβ (k + 1) θβx−β−1e−(k+1)( θx)
β

, (7)

υk =
∞∑
j=0

(−1)j+k λΓ (a) Γ (λ (b+ j))

j! (k + 1)B(a, b)Γ (a− j) Γ (λ (b+ j)− k)
.

Equation (7) can be rewritten as

f (x) =
∞∑
k=0

υk hk+1 (x) , (8)

where hk+1 (x) is the Fréchet pdf with shape parameter β and scale parameter θ (k + 1)1/β.



Austrian Journal of Statistics 45

Reduced Parameters
Model θ β a b λ Author
BExIR − 2 − − − New
BExIEx − 1 − − − New

BFr − − − − 1 Nadarajah and Gupta (2004)
BIR − 2 − − 1 –
BIEx − 1 − − 1 –

EExFr − − 1 − − New
EExIR − 2 1 − − New
EExIEx − 1 1 − − New

EFr − − 1 − 1 Nadarajah and Kotz (2003)
EIR − 2 1 − 1 –
EIEx − 1 1 − 1 –
ExFr − − 1 1 − New
ExIR − 2 1 1 − New
ExIEx − 1 1 1 − New

Fr − − 1 1 1 Fréchet (1924)
IR − 2 1 1 1 Trayer (1964)
IEx − 1 1 1 1 Keller and Kamath (1982)

BExGIW qc1/β − − − − New

BExGIR qc1/2 2 − − − New
BExGIEx qc 1 − − − New

BGIW qc1/β − − − 1 Baharith et al. (2014)

BGIR qc1/2 2 − − 1 –
BGIEx qc 1 − − 1 –

EExGIW qc1/β − 1 − − New

EExGIR qc1/2 2 1 − − New
EExGIEx qc 1 1 − − New

EGIW qc1/β − 1 − 1 –

EGIR qc1/2 2 1 − 1 –
EGIEx qc 1 1 − 1 –

GIW qc1/β − 1 1 1 de Gusmao et al. (2011)

GIR qc1/2 2 1 1 1 –
GIEx qc 1 1 1 1 –

Table 1: Sub-models of the BExFr distribution.

Equation (8) reveals that the BExFr density function can be expressed as a mixture of Fréchet
densities. So, several of its structural properties can be derived from those of the Fréchet
distribution.

By integrating (8), we obtain

F (x) =

∞∑
k=0

υkHk+1 (x) ,

where Hk+1 (x) is the cdf of the Fréchet model with shape parameter β and scale parameter

θ (k + 1)1/β.

3. Mathematical properties

Established algebraic expansions to determine some structural quantities of the BExFr dis-
tribution can be more efficient than computing those directly by numerical integration of its
density function.

Let X and Y be two random variables. X is said to be stochastically greater than or equal
to Y, denoted by X >

st
Y if P (X > x) ≥ P (Y > x) for all x in the support set of X.
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Figure 2: The hrf plots for the BExFr model.

Theorem 1. Suppose X ∼ BExFr(a, b, λ1, β1, θ1) and Y ∼ BExFr(a, b, λ2, β2, θ2). If β1 < β2,
θ1 > θ2 and λ1 < λ2 Then X >

st
Y , for integer values of β1 and β2.

Proof. At first, we consider the following:

Ix(a, b) =

∫ x
0 u

a−1(1− u)b−1du

B(a, b)
.

Next, note that the incomplete beta function Betax(a, b) is an increasing function of x for
fixed a and b. For any real number x ∈ (0,∞), β1 < β2, θ1 > θ2 and λ1 < λ2, we have

[
1− e−

(
θ1
x

)β1]λ1
>

[
1− e−

(
θ2
x

)β2]λ2
This implies that I1−e

−
(
θ1
x

)β1λ1 (a, b) ≤ I1−e
−
(
θ2
x

)β2λ2 (a, b). Equivalently, it implies that

P (X > x) ≥ P (Y > x) and this completes the proof. �

Note: For fractional choices of λ1, λ2, β1, β2, the reverse of the theorem will be observed.

Corollary 1. From Theorem 1, we conjecture the following:

• For increasing θ, and β and λ decreasing, the hrf will exhibit DFR.
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• For decreasing θ, and β and λ increasing, the hrf will exhibit IFR.

3.1. Quantile function

Let Qa,b (u) be the beta qf with parameters a and b. The qf of the BExFr distribution, say
x = Q(u), is given by

Q(u) = θ
{
− ln

[
1− [1−Qa,b (u)]1/λ

]}−1/β
, 0 < u < 1.

This scheme is useful to generate BFr random variates because of the existence of fast genera-
tors for beta random variables in most statistical packages, i.e. if V is a beta random variable
with parameters a and b, then

X = θ
{
− ln

[
1− (1− V )1/λ

]}−1/β

follows the BExFr distribution.

3.2. Moments

Henceforth, let Z be a random variable having the Fréchet distribution (1) with parameters
θ and β. For r < β, the rth ordinary and incomplete moments of Z are, respectively, given
by

µ′r = θr Γ(1− r/β) and ϕr(t) = θrγ(1− r/β, (θ/t)β) ,

where γ (s, t) =
∫ t

0 x
s−1 e−xdx is the lower incomplete gamma function.

Then, the rth moment of X, say µ′r, can be expressed as

µ′r = θr
∞∑
k=0

υk (k + 1)r/β Γ(1− r/β). (9)

Setting r = 1 in (9), we have the mean of X.

Using the relation between the central and non-central moments, we obtain the nth central
moment of X, say µn, as follows

µn = θr
n∑
r=0

∞∑
k=0

(
n

r

)
υk
(
−µ′1

)n−r
(k + 1)r/β Γ(1− r/β).

The skewness and kurtosis measures can be determined from the central moments using well-
known relationships.

3.3. Moment generating function

First, we provide the generating function of the Fréchet model as discussed by Afify et al.
(2016). Setting y = x−1, we can write the mgf of Z as

M(t; θ, β) = βθβ
∫ ∞

0
e
t
y yβ−1 e−(θy)βdy.

After expanding e
t
y , we can write

M(t; θ, β) = βθβ
∫ ∞

0

∞∑
m=0

tm

m!
yβ−m−1 e−(θy)βdy

=
∞∑
m=0

θm tm

m!
Γ

(
β −m
β

)
,
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where the gamma function is well-defined for any non-integer β.

Consider the Wright generalized hypergeometric function defined by

pΨq

[ (
γ1, A1

)
, . . . ,

(
γp, Ap

)(
β1, B1

)
, . . . ,

(
βq, Bq

) ; x

]
=

∞∑
n=0

p∏
j=1

Γ (γj +Aj n)

q∏
j=1

Γ (βj +Bj n)

xn

n!
.

Then, we can write M(t; θ, β) as

M(t; θ, β) = 1Ψ0

[ (
1,−β−1

)
− ; θ t

]
.

Combining expressions (8) and the last equation, we obtain the mgf of X, say M(t), as

M(t) =
∞∑
k=0

υk 1Ψ0

[ (
1,−β−1

)
− ; θ(k + 1)1/β t

]
.

3.4. Incomplete moments

The nth incomplete moment, say ϑn(t) of the BExFr model is given by ϑn(t) =
∫ t

0 x
n f(x)dx.

From equation (8), we can write

ϑn(t) =
∞∑
k=0

υk

∫ t

0
xn hk+1(x).

Using the lower incomplete gamma function, we obtain (for n < β)

ϑn(t) =
∞∑
k=0

υk θ
n (k + 1)n/βγ

(
1− n

β
, (k + 1)

(
θ

t

)β)
. (10)

The important application of the first incomplete moment is related to the Bonferroni and
Lorenz curves. These curves are very useful in economics, reliability, demography, insurance
and medicine.

Further, the amount of scatter in a population is evidently measured to some extent by the
totality of deviations from the mean and median. The mean deviations about the mean and
about the median of X can be expressed as δµ (X) =

∫∞
0 |X − µ

′
1| f(x)dx = 2µ′1F (µ′1) −

2ϑ1(µ′1) and δM (X) =
∫∞

0 |X −M | f(x)dx = µ′1 − 2ϑ1(M), respectively, where µ′1 = E(X)
comes from (11), F (µ′1) is simply calculated from (5), ϑ1(µ′1) is the first incomplete moment
and M is the median of X.

3.5. Mean residual life and mean inactivity time

The MRL has many applications in biomedical sciences, life insurance, maintenance and
product quality control, economics and social studies, demography and product technology
(see Lai and Xie, 2006). Guess and Proschan (1988) gave an extensive coverage of possible
applications of the mean residual life. The MRL (or the life expectancy at age t) represents
the expected additional life length for a unit, which is alive at age t.

The MRL is given by
mX (t) = E (X − t | X > t) , t > 0.

Then, the MRL of X can be obtained as

mX (t) = [1− ϑ1 (t)] /R(t)− t, (11)
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where ϑ1 (t) is the first incomplete moment of X and by setting n = 1 in equation (10), we
obtain

ϑ1(t) =
∞∑
k=0

υk θ (k + 1)1/βγ

(
1− 1

β
, (k + 1)

(
θ

t

)β)
. (12)

By substituting (12) in equation (11), we obtain

mX (t) =
θ

R(t)

∞∑
k=0

υk (k + 1)1/βγ

(
1− 1

β
, (k + 1)

(
θ

t

)β)
− t.

The MIT represents the waiting time elapsed since the failure of an item on condition that
this failure had occurred in (0, t). The MIT of X is defined (for t > 0) by MX (t) =
E (t−X | X ≤ t).
The MIT of X is given by

MX (t) = t− [ϕ1 (t) /F (t)] . (13)

By inserting (12) in equation (13), we obtain the MIT of X as

MX (t) = t− θ

F (t)

∞∑
k=0

υk (k + 1)1/βγ

(
1− 1

β
, (k + 1)

(
θ

t

)β)
.

3.6. Entropies

The Rényi entropy of a random variableX represents a measure of variation of the uncertainty.
The Rényi entropy is defined by

Iq (x) =
1

1− q
log

∫ ∞
−∞

f q (x) dx, q > 0 and q 6= 1.

From equation (5), we can write

f q (x) =

(
λβθβ

B(a, b)

)q
x−q(β+1)e−q(

θ
x)
β
[
1− e−( θx)

β
]q(λb−1)

×

{
1−

[
1− e−( θx)

β
]λ}q(a−1)

.

Applying the power series (6) to the last equation and after some simplifications, we can write

f q (x) = βqθqβ
∞∑
k=0

ωk x
−q(β+1)e−(k+q)( θx)

β

,

where

ωk =
∞∑
j=0

(−1)j+k λqΓ (q (λb− 1) + 1) Γ (λ (bq + j)− q + 1)

j! k! [B(a, b)]q Γ (q (λb− 1)− j + 1) Γ (λ (bq + j)− q − k + 1)
.

Then, the Rényi entropy of X is given by

Iq (x) =
1

1− q
log

βqθqβ ∞∑
k=0

ωk

∫ ∞
0

x−q(β+1)e−(k+q)( θx)
β

dx︸ ︷︷ ︸
I

 .
Then,

I =
θ1−q(β+1)

β
(k + q)−s/β Γ

(
s

β

)
,
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where s = q (β + 1)− 1.

Now, we can write the Rényi entropy of X as

Iq (x) =
1

1− q
log

{ ∞∑
k=0

ωk

(
β

θ

)q−1

(k + q)−s/β Γ

(
s

β

)}
. (14)

The q-entropy, say Hq(x), is defined by

Hq(x) =
1

q − 1
log [1− Iq (x)] ,

where

Iq (x) =

∫
<
f q (x) dx, q > 0 and q 6= 1.

From equation (14), we obtain

Hq(f) =
1

q − 1
log

{
1−

∞∑
k=0

ωk

(
β

θ

)q−1

(k + q)−s/β Γ

(
s

β

)}
.

The Shannon entropy, say Esh, of a random variable X is defined by

Esh = E {− [log f (x)]} .

It is a special case of the Rényi entropy when q ↑ 1. So, based on equation (8), we can write

Esh = −

{
log

[ ∞∑
k=0

υk E (Yk+1)

]}
,

where Yk+1 ∼Fr(θ(k + 1)1/β, β). But E (Yk+1) = θ (k + 1)1/β Γ(1− 1/β), so the Esh of X is
given by

Esh = −

{
log

[ ∞∑
k=0

υk θ (k + 1)1/β Γ(1− 1

β
)

]}
.

4. Order statistics

In this section we consider the expression for the general r-th order statistic and the large
sample distribution of the sample minimum and the sample maximum when a random sample
of size n are drawn from the BExFr(a, b, λ, β, θ) distribution. The density function of the rth
order statistic, Xr:n, for a random sample of size n drawn from (5), is given by

fXr:n(x) =
1

B(r, n− r + 1)
(F (x))r−1(1− F (x))n−rf(x).

Then the rth order statistic of X is given by

fXr:n(x) =
1

B(r, n− r + 1)
f(x)

n−r∑
j=0

(−1)j
(
n− r
j

)
I(0 < x < 1)

×


B

(
1−

(
1− e−( θx)

β
)λ

; a, b

)
B (a, b)


r−1+j

.

Using the series expression for the incomplete beta function:
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Ix (a, b, ) =
B (x, a, b)

B(a, b)
=

a+b−1∑
k=a

xk(1− x)a+b−1−k,

the pdf of Xr:n can be written as

fr:n(x) =
f(x)

B(r, n− r + 1)

n−r∑
j=0

a+b−1∑
k=a

(−1)j
(
n− r
j

)

×


a+b−1∑
k=a

[
1−

(
1− e−( θx)

β
)λ]k (

1− e−( θx)
β
)λ(a+b−1−k)


r−1+j

=
f(x)

B(r, n− r + 1)

n−r∑
j=0

a+b−1∑
k1=a

· · ·
a+b−1∑

kr−1+j=a

(−1)j+sk
(
n− r
j

)

× Beta(sk + a, (r − 1 + j)(a+ 2b− 1)− sk)
Beta(a, b)

pk

× f (x|sk + a, (r − 1 + j)(a+ 2b− 1)− sk), λ, β, θ) , (15)

where sk =

r−1+j∑
i=1

ki and pk =

r−1+j∏
i=1

(
a+ b− 1

ki

)
.

Also, f (x|sk + a, (r − 1 + j)(a+ 2b− 1)− sk), λ, β, θ) is the density of a BExFr distribution
with parameters sk + a, (r − 1 + j)(a+ 2b− 1)− sk), λ, β, θ respectively.

From (15), it is interesting to note that the pdf of the rth order statistic Xr:n can be expressed
as an finite sums of the BExFr pdf ’s. However, if a and b are not integers, then the sums
will terminate at ∞. Note that, using moments expression, one can easily get an expression
for the general mth order moment for the order statistics.

5. Characterizations

This section deals with various characterizations of BExFr distribution. These characteriza-
tions are based on: (i) a simple relationship between two truncated moments; (ii) the hazard
function. It should be mentioned that for characterization (i) the cdf need no have a closed
form. We believe, due to the nature of the cdf of BExFr, there may not be other possible
characterizations than the ones presented in this section.

5.1. Characterizations based on two truncated moments

In this subsection we present characterizations of BExFr distribution in terms of a simple
relationship between two truncated moments. Our first characterization employs a theorem
due to Glänzel (1987), see Theorem 1 below. Note that the result holds also when the interval
H is not closed. It should also be mentioned that this characterization is stable in the sense
of weak convergence.

Theorem 2. Let (Ω,F ,P) be a given probability space and let H = [d, e] be an interval for
some d < e (d = −∞, e =∞ might as well be allowed). Let X : Ω→ H be a continuous
random variable with the distribution function F and let g and h be two real functions defined
on H such that

E [g (X) | X ≥ x] = E [h (X) | X ≥ x] η (x) , x ∈ H,

is defined with some real function η. Assume that g, h ∈ C1 (H), η ∈ C2 (H) and F is twice
continuously differentiable and strictly monotone function on the set H. Finally, assume that
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the equation hη = g has no real solution in the interior of H. Then F is uniquely determined
by the functions g, h and η, particularly

F (x) =

∫ x

a
C

∣∣∣∣ η′ (u)

η (u)h (u)− g (u)

∣∣∣∣ exp (−s (u)) du ,

where the function s is a solution of the differential equation s′ = η′ h
η h − g and C is the

normalization constant, such that
∫
H dF = 1.

Proposition 1. Let X : Ω→ (0,∞) be a continuous random variable and let

h (x) =

[
1−

(
1− e−( θx)

β
)λ]1−a

and g (x) = h (x)

(
1− e−( θx)

β
)
forx > 0.

The random variable X belongs to BExFr family (5) if and only if the function η defined in
Theorem 2 has the form

η (x) =
λb

λb+ 1

(
1− e−( θx)

β
)
, x > 0.

Proof. Let X be a random variable with density (5), then

(1− F (x))E [h (x) | X ≥ x] =
1

bB (a, b)

(
1− e−( θx)

β
)λb

, x > 0

and

(1− F (x))E [g (x) | X ≥ x] =
λ

(λb+ 1)B (a, b)

(
1− e−( θx)

β
)λb+1

, x > 0,

and finally

η (x)h (x)− g (x) = h (x)
1

bB (a, b)

(
1− e−( θx)

β
){
− 1

λb+ 1

}
< 0 for x > 0.

Conversely, if η is given as above, then

s′ (x) =
η′ (x)h (x)

η (x)h (x)− g (x)
=
λbβx−(β+1)e−( θx)

β

1− e−( θx)
β , x > 0,

and hence

s (x) = − ln

{(
1− e−( θx)

β
)λb}

, x > 0.

Now, in view of Theorem 2, X has density (5).

Corollary 2. Let X : Ω → (0,∞) be a continuous random variable and let h (x) be as
in Proposition 1. The pdf of X is (5) if and only if there exist functions g and η defined in
Theorem 2 satisfying the differential equation

η′ (x)h (x)

η (x)h (x)− g (x)
=
λbβx−(β+1)e−( θx)

β

1− e−( θx)
β , x > 0. (16)

The general solution of the differential equation in Corollary 2 is
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η (x) =

[
1− e−( θx)

β
]−λb −

∫ λbβe−( θx)
β
[
1− e−( θx)

β
]λb−1

h (x)xβ+1
g (x) dx+D

 ,
where D is a constant. Note that a set of functions satisfying the differential equation (16)
is given in Proposition 1 with D = 0. Clearly, there are other triplets (h, g, η) satisfying the
conditions of Theorem 2.

5.2. Characterization based on hazard function

It is known that the hazard function, hF , of a twice differentiable distribution function, F ,
satisfies the first order differential equation

f ′(x)

f(x)
=
h′F (x)

hF (x)
− hF (x). (17)

For many univariate continuous distributions, this is the only characterization available in
terms of the hazard function. The following characterization establish a non-trivial charac-
terization for BExFr distribution in terms of the hazard function when a = 1, which is not of
the trivial form given in (17).

Proposition 2. Let X : Ω→ (0,∞) be a continuous random variable. Then for a = 1, the
pdf of X is (5) if and only if its hazard function hF (x) satisfies the differential equation

h′F (x) + (β + 1)x−1hF (x) = λbβ2θ2βx−2(β+1)e−( θx)
β
(

1− e−( θx)
β
)−2

= λbβθβx−(β+1) d

dx

{(
1− e−( θx)

β
)−1

}
. (2)

Proof. If X has pdf (5), then clearly (18) holds. Now, if (18) holds, then

d

dx

{
xβ+1hF (x)

}
= λbβθβ

d

dx

{(
1− e−( θx)

β
)−1

}
,

or, equivalently,

hF (x) =
λbβθβx−(β+1)e−( θx)

β

1− e−( θx)
β .

Integrating the above equation from 0 to x, we obtain

1− F (x) =

(
1− e−( θx)

β
)λb

, x ≥ 0.

6. Maximum likelihood estimation

In this section, we consider the estimation of the parameters of the BExFr model by the
maximum likelihood. Consider the random sample X1, . . . , Xn of size n from this distribution.
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The log-likelihood function for the parameter vector ϕ = (a, b, λ, β, θ)ᵀ, say `(ϕ), is given by

`(ϕ) = n [log λ+ log β + β log θ − logB(a, b)]− (β + 1)
n∑
i=1

log (xi)

−
n∑
i=1

(
θ

xi

)β
+ (λb− 1)

n∑
i=1

log (si) + (a− 1)
n∑
i=1

log
(

1− sλi
)
,

where si = 1− e−
(
θ
xi

)β
.

This equation can be maximized either directly by using the R (optim function), MATH-CAD
program, SAS (PROC NLMIXED) or by solving the nonlinear equations obtained by differentiat-

ing the log-likelihood. Therefore, the score vector is U (ϕ) = ∂`
∂ϕ =

(
∂`
∂a ,

∂`
∂b ,

∂`
∂λ ,

∂`
∂β ,

∂`
∂θ

)ᵀ
.

∂`

∂a
= n [ψ (a+ b)− ψ (a)] +

n∑
i=1

log
(

1− sλi
)
,

∂`

∂b
= n [ψ (a+ b)− ψ (b)] + λ

n∑
i=1

log (si) ,

∂`

∂λ
=
n

λ
+ b

n∑
i=1

log (si)− (a− 1)

n∑
i=1

sλi log (si)

1− sλi

∂`

∂β
=

n

β
+ n log θ −

n∑
i=1

log (xi)−
n∑
i=1

(
θ

xi

)β
log

(
θ

xi

)

+ (λb− 1)
n∑
i=1

zi
si
− λ (a− 1)

n∑
i=1

zis
λ−1
i

1− sλi

and

∂`

∂θ
=

nβ

θ
− β

θ

n∑
i=1

(
θ

xi

)β
− βλ (a− 1)

θ

n∑
i=1

(
θ
xi

)β
sλ−1
i

1− sλi

+
β (λb− 1)

θ

n∑
i=1

1

si

(
θ

xi

)β
e
−
(
θ
xi

)β
,

where zi =
(
θ
xi

)β
e
−
(
θ
xi

)β
log
(
θ
xi

)
and ψ (.) is the digamma function which is the derivative

of log Γ (.), where Γ (.) is the gamma function.

We can obtain the estimates of the unknown parameters by setting the score vector to zero,
U(ϕ̂) = 0. Solving these equations simultaneously yields the MLEs ϕ̂ = ( â, b̂, λ̂, β̂, θ̂)ᵀ of
ϕ = (a, b, λ, β, θ)ᵀ. These equations cannot be solved analytically and statistical software
can be used to solve them numerically by means of iterative techniques such as the Newton-
Raphson algorithm. For the new distribution all the second-order derivatives exist.

For interval estimation of the model parameters, we require the 5 × 5 observed information
matrix J (ϕ) = {Jrs} (for r, s = a, b, λ, β, θ) . Under standard regularity conditions, the mul-
tivariate normal N5(0, J(ϕ̂)−1) distribution can be used to construct approximate confidence
intervals for the model parameters. Here, J(ϕ̂) is the total observed information matrix eval-
uated at ϕ̂. Based on this multivariate normal approximation, the approximate 100(1− φ)%
confidence intervals for a, b, λ, β and θ can be determined by the usual way.
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7. Simulation

In this section, we consider the maximum likelihood estimation of parameters for the two
models derived in the preceding sections. The maximum likelihood estimators can be obtained
by direct maximization of the likelihood functions given earlier. Here, we maximized the log-
likelihood function using SAS PROC NLMIXED. For each maximization, the SAS PROC NLMIXED

function was executed for a wide range of initial values, and the maximum likelihood estimates
were determined as the ones that corresponds to the largest of the maxima.

To illustrate the feasibility of the suggested estimation strategy, a small simulation study was
undertaken. The simulation study was carried out for one representative set of parameters
(λ, β, θ, a, b) =(1.6, 2.3, 1.2, 1.8, 0.9) and the process was repeated 30000 times. Three different
sample sizes n = 50, 100 and 200 were considered. The bias (actual-estimate) and the standard
deviation of the parameter estimates for the maximum likelihood estimates were determined
from this simulation study and are presented in Table 2.

Table 2. Bias and standard deviation of the parameter estimates.

Parameter Sample size (n=50) Sample size (n=100) Sample size (n=200)

λ 0.1108(0.5382) 0.0614(0.2345) 0.0437(0.1139)

β 0.1678(0.4628) -0.1321(0.1894) 0.0672(0.0933)

θ 0.0268(0.4321) 0.1483(0.2467) 0.0946(0.1264)

a 0.0825(0.0667) 0.0779(0.0627) 0.0621(0.0358)

b 0.127(0.2368) 0.0651(0.0789) 0.0317(0.0223)

The figures in Table 2 indicate that the estimates are quite stable and, more important, are
close to the true values for the these sample sizes. Furthermore, as the sample size increases,
the SEs decreases as expected.

8. Applications

In this section, we provide two applications to two real data sets to prove the importance and
flexibility of the BExFr distribution. The first real data set represents the survival times, in
weeks, of 33 patients suffering from acute Myelogeneous Leukaemia. These data have been
analyzed by Feigl and Zelen (1965). The data are: 65, 156, 100, 134, 16, 108, 121, 4, 39, 143,
56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 4, 43. The second data set,
strength data, which were originally reported by Badar and Priest (1982) and it represents the
strength measured in GPA for single carbon fibers and impregnated 1000-carbon fiber tows.
Single fibers were tested under tension at gauge lengths of 10 mm with sample size ( n = 63).
This data set consists of observations: 1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396,
2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659,
2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145,
3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501,
3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020. These
data have been used by Afify et al. (2015b) and Afify et al. (2015c) to fit the exponentiated
transmuted generalized Rayleigh and transmuted Weibull Lomax distributions, respectively.

We shall compare the fit of the proposed BExFr distribution (and its sub-models namely:
BFr, EFr and Fr distributions) with several other competitive models namely: the generalized
inverse gamma (Mead, 2015), McDonald Lomax (McL) (Lemonte and Cordeiro, 2013), gamma
Lomax (GL) ( Cordeiro et al., 2015) and Zografos-Balakrishnan log-logistic (ZBLL) (Zografos
and Balakrishnan, 2009 ) models with corresponding densities (for x > 0):

GIG: f(x; θ, β, a, b, λ) = bθab

Γλ(a,β)x
−(ab+1)

[(
θ
x

)b
+ β

]−λ
exp

[
−
(
θ
x

)b]
;

McL: f(x; θ, β, a, b, λ) = θλ
βB( aλ ,b)

(
1 + x

β

)−(θ+1)
[
1−

(
1 + x

β

)−θ]a−1
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×

{
1−

[
1−

(
1 + x

β

)−θ]λ}b−1

;

GL: f(x; θ, β, a) = θβθ

Γ(a)Γ(β+x)θ+1

[
−θ ln

[(
β

β+x

)]]a−1
;

ZBLL: f(x; θ, β, a) = βθ−β

Γ(a) x
β−1

[
1 +

(
x
θ

)β]−2 {
ln
[
1 +

(
x
θ

)β]}a−1
;

where the parameters of the above densities are all positive real numbers, Γ (a) is the gamma
function and Γλ (a, β) is the generalized gamma function (Kobayashi, 1991) defined by

Γλ (a, β) =

∫ ∞
0

ya−1 (β + y)−λ exp (−y) dy.

In order to compare the models, we consider some goodness-of-fit measures including −2̂̀,
where ̂̀ is the maximized loglikelihood, Anderson-Darling (A∗) and Cramér-von Mises (W ∗)
statistics (full details can be found in Chen and Balakrishnan, 1995). In general, the model
with minimum values for these statistics could be chosen as the best model to fit the data.

Tables 4 and 5 list the MLEs of the model parameters, their corresponding standard errors
(given in parentheses) and the values of these statistics (−2̂̀, A∗ and W ∗) for the fitted models
to both data sets.

Tables 3 and 4 compare the BExFr model with the BFr, EFr, Fr, GIG, McL, ZBLL and GL
distributions. It is noted, from Tables 4 and 5, that the BExFr distribution gives the lowest
values for the−2̂̀, A∗ andW ∗ statistics among all fitted models. Thus, the BExFr distribution
could be chosen as the best models. These results are obtained using the MAT-HCAD PROGRAM.

Table 3. MLEs, their corresponding standard errors and the statistics −2̂̀, W ∗ and A∗ for
the first data set.

Model Estimates −2̂̀ W ∗ A∗

θ̂ β̂ â b̂ λ̂

BExFr 29.5877 0.1107 21.0415 19.7308 1.7253 308.117 0.11211 0.70495
(201.769) (0.146) (64.505) (62.632) (4.578)

BFr 6.89494 0.13852 16.8911 24.04154 308.213 0.11407 0.71477
(60.760) (0.138) (43.704) (47.769)

EFr 13.3423 0.5732 1.4581 310.894 0.15728 0.95136
(14.377) (0.206) (1.007)

Fr 7.8651 0.6944 311.997 0.17306 1.0475
(2.091) (0.091)

GIG 3.1481 0.89959 8.42866 0.29097 18.95355 308.233 0.11333 0.7127
(45.860) (4.01682) (10.3956) (0.033) (17.1406)

McL 0.57665 8.46832 1.62102 1.72961 0.46481 310.958 0.13714 0.84928
(1.067) (28.781) (2.762) (2.593) (3.251)

ZBLL 7.45579 1.01264 1.4687 318.823 0.156487 0.95522
(0.248) (0.138) (0.179)

GL 1.1115 3.52517 2.1469 311.037 0.1419 0.86637
(0.271) (6.722) (1.6968)

Figures 3 and 4 display the estimated pdf’s and cdf’s of the BExFr distribution for the first
real data set, where figures 5 and 6 represent the same for the second data set respectively.
It is shown from these figures that the BExFr provides a close fit to these data sets.
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Figure 3: The fitted BExFr density for the first data set

Table 4. MLEs, their corresponding standard errors and the statistics −2̂̀, W ∗ and A∗ the
second data set

Model Estimates −2̂̀ W ∗ A∗

θ̂ β̂ â b̂ λ̂

BExFr 12.6463 0.4852 25.7682 14.2299 7.2493 112.704 0.05574 0.31204
(75.689) (0.978) (71.831) (67.197) (28.051)

BFr 25.03468 0.55403 7.91533 185.80664 113.065 0.0558 0.32555
(21.8041) (0.255) (6.395) (155.015)

EFr 4.2957 2.3636 7.0322 112.701 0.05895 0.31988
(1.613) (1.028) (8.513)

Fr 2.7214 5.4338 117.804 0.12884 0.69597
(0.067) (0.508)

GIG 1.7724 0.26685 3.12731 3.72201 8.12837 113.065 0.06669 0.3536
(0.5801) (1.18644) (3.3986) (2.082) (6.41594)

McL 1.89877 3.68277 37.12441 26.14064 2.85382 113.018 0.05712 0.32925
(14.485) (10.640) (37.783) (236.492) (5.007)

ZBLL 2.7035 8.16714 1.45705 140.08 0.10167 0.53337
(0.0033) (0.823) (0.13)

GL 67.73728 2.76071 50.15703 112.922 0.05965 0.33634
(29.078) (4.312) (36.5936)
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Figure 4: The fitted BExFr density for the second data set.
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Figure 5: The estimated cdf of the BExFr model for the first data set.

9. Concluding remarks

In this paper, we propose a new five-parameter model, called the beta exponential Fréchet
(BExFr) distribution, which extends the Fréchet distribution. In fact, the BExFr distribution
is motivated by the wide use of the Fréchet distribution in extreme value theory and also for the
fact that the generalization provides more flexibility to analyze real data. The BExFr density
function can be expressed as a mixture of Fréchet densities. We derive explicit expressions for
the ordinary and incomplete moments, moment generating function, entropies, mean residual
life and mean inactivity time. We discuss the maximum likelihood estimation of the model
parameters. Two applications illustrate that the proposed model provides consistently better
fit than the other competitive models.

Estimation of the model parameters under the bayesian paradigm is currently underway
and will be reported in a separate article elsewhere. However, we must make a note of
the fact under the Bayesian setting, a non informative prior approach is essentially maximum
likelihood estimation under the classical approach. In the absence of an appropriate conjugate
prior, the choice of prior will be a challenging in such a setting.

As a future work we will consider the following:

• Bivariate and multivariate extension of the BExFr distribution. In particular with the
copula based construction method, trivariate reduction etc.

• Comparison of the derived models with the available popular bivariate beta- G and
bivariate exponential type models.
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Figure 6: The estimated cdf of the BExFr model for the second data set.
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